f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ahc

NAG C Library Function Document
nag dgelqf (f08ahc)

1 Purpose

nag_dgelqf (f08ahc) computes the L) factorization of a real m by n matrix.

2 Specification

void nag_dgelqf (Nag_OrderType order, Integer m, Integer n, double al],
Integer pda, double tau[], NagError xfail)

3 Description

nag_dgelqf (f08ahc) forms the L() factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

If m < n, the factorization is given by:
A=(L 0)Q

where L is an m by m lower triangular matrix and @) is an n by n orthogonal matrix. It is sometimes
more convenient to write the factorization as

A= (L 0)(82)

A= LQI)

which reduces to

where @), consists of the first m rows of), and @), the remaining n — m rows.
If m > n, L is trapezoidal, and the factorization can be written
L
A= !
< Ly > “
where L, is lower triangular and L, is rectangular.

The LQ factorization of A is essentially the same as the QR factorization of AT since

A=(L O)Q@AT—QT<LOT>.

The matrix @ is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the fO8 Chapter Introduction for details). Functions are provided to work with () in this representation
(see Section).

Note also that for any k < m, the information returned in the first k£ rows of the array a represents an L@
factorization of the first £ rows of the original matrix A.

4 References

None.

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by

[NP3645/7] f08ahc.1

f08ahc NAG C Library Manual

order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least max(1l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].
On entry: the m by n matrix A.

On exit: if m < n, the elements above the diagonal are overwritten by details of the orthogonal
matrix @) and the lower triangle is overwritten by the corresponding elements of the m by m lower
triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by details of the orthogonal matrix () and
the remaining elements are overwritten by the corresponding elements of the m by n lower
trapezoidal matrix L.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:
if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).

6: tau[dim] — double Output
Note: the dimension, dim, of the array tau must be at least max(1, min(m,n)).

On exit: further details of the orthogonal matrix Q).

7: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

f08ahc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ahc

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix A + £, where
1E]l, = O All,,

and ¢ is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately %m2(3n —m) if m <nor %n2(3m —n) if

m>n.

To form the orthogonal matrix () this function may be followed by a call to nag_dorglq (f08ajc):
nag_dorglg (order,n,n,MIN(m,n),&a,pda,tau,&fail)

but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which
may be larger than was required by nag_ dgelqf (f08ahc).

When m < n, it is often only the first m rows of () that are required, and they may be formed by the call:
nag_dorglg (order,m,n,m,&a,pda,tau,&fail)

To apply) to an arbitrary real rectangular matrix C, this function may be followed by a call to
nag_dormlq (f08akc). For example,

nag_dormlg (order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),b&a,pda,
tau, &c,pdc,&fail)

forms the matrix product C' = Q' C, where C is m by p.
The complex analogue of this function is nag_zgelqf (f08avc).

9 Example

To find the minimum-norm solutions of the under-determined systems of linear equations
Az, =b; and Az, = b,

where b, and b, are the columns of the matrix B,

—5.42 3.28 —3.68 027 206 046 —2.87 —5.23
A= —1.65 —-340 -320 -1.03 —4.06 -0.01 and B — 1.63 0.29
-037 235 1.90 431 -1.76 1.13 —3.52 476
-3.15 -0.11 1.99 =270 026 4.50 045 —-8.41

[NP3645/7] f08ahc.3

f08ahc NAG C Library Manual

9.1 Program Text

/* nag_dgelgf (f08ahc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *b=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define B(I,J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al[(I-1)*pda + JT - 1]

#define B(I,J) b[(I-1)#*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f08ahc Example Program Results\n\n");

/* Skip heading in data file =*/
Vscanf ("$*[*\n] ");
Vscanf ("$1d%1d%1d%*["\n] ", &m, &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR

pda = m;

pdb = n;
#else

pda = n;

pdb = nrhs;
#endif

tau_len = MIN(m,n) ;

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, double)) ||
! (b = NAG_ALLOC(n * nrhs, double)) ||
! (tau = NAG_ALLOC(tau_len, double)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file =*/
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf ("$1f", &A(i,3));

}
Vscanf ("$*[*\n] ");
for (i = 1; 1 <= m; ++1)

f08ahc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Vscanf ("$#* [*\n]

/* Compute the LQ factorization of A */
f08ahc (order,
(fail.code

if

{

}

{

}

for

(3 = 1;
Vscanf ("%1f",

m, n,

")

j <= nrhs; ++3j)

&B(1,3));

a, pda,

tau,

!= NE_NOERROR)

/* Solve L*Y = B,
fO7tec(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m,

if

{

}

nrhs,
(fail.code

/* Set rows
(m < n)

if

/* Compute minimum-norm solution X
fO08akc(order, Nag_LeftSide, Nag_Trans, n,
b, pdb,
(fail.code

if

/* Print minimum-norm solution(s)

{

}

{

}

for

{

for

a, pda,

b, pdb,

1= NE_NOERROR)

(i = m + 1;

(3 = 1;

B(i,3)

tau,

i <= n;

++1i)

&fail);

Vprintf ("Error from f£08ahc.\n%s\n",
exit_status =
goto END;

&fail) ;

Vprintf ("Error from fO07tec.\n%s\n",
exit_status =
goto END;

(M+1) to N of B to zero */

j <= nrhs; ++7j)

.0;

s&fail);

= NE_NOERROR)

fail.message) ;

storing the result in B */

fail.message) ;

= (Q**T)*B in B */

Vprintf ("Error from f08akc.\n%s\n",
exit_status =
goto END;

*/

nrhs, m, a, pda,

fail.message) ;

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
"Minimum-norm solution(s)
= NE_NOERROR)

if

END
if
if
if

}

(fail.code

{

}

(a)
(b)

(tau)
return exit_statu

NAG_FREE (a)
NAG_FREE (b)
NAG_FREE (

S

9.2 Program Data

f08ahc
4 o 2
-5.42
-1.65 -3.
-0.37
-3.15 -0.
-2.87 -5.
1.63
-3.52
0.45 -8.
[NP3645/7]

’
tau) ;
i

Example Program Data

3.

2.

0.
4.

28
40
35
11
23
29
76
41

-3.68
-3.20
1.90
1.99

0.27
-1.03
4.31
-2.70

2.06
-4.06
-1.76

0.26

0, &fail);

Vprintf ("Error from x04cac.\n%s\n",
exit_status = 1;
goto END;

0.46
-0.01
1.13
4.50

fail.message) ;

:Values of M, N and NRHS

:End of matrix A

:End of matrix B

f08ahc

f08ahc.5

f08ahc

9.3 Program Results

f08ahc Example Program Results

Minimum-norm solution(s)

1
0.2371
-0.4575
-0.0085
-0.5192
0.0239
-0.0543

O UL wN B

2

.7383
.0158
.0lel
.0768
.6436
.6613

NAG C Library Manual

f08ahc.6 (last)

[NP3645/7]

	f08ahc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

